The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization
نویسندگان
چکیده
In this paper, we deal with an important issue generally omitted in the current literature on evolutionary multiobjective optimization: on-line adaptation. We propose a revised version of our micro-GA for multiobjective optimization which does not require any parameter fine-tuning. Furthermore, we introduce in this paper a dynamic selection scheme through which our algorithm decides which is the “best” crossover operator to be used at any given time. Such a scheme has helped to improve the performance of the new version of the algorithm which is called the micro-GA2 (μGA). The new approach is validated using several test function and metrics taken from the specialized literature and it is compared to the NSGA-II and PAES.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملLetters 1 Decomposition - Based Multiobjective Evolutionary 2 Algorithm with an Ensemble of Neighborhood Sizes 3
The multiobjective evolutionary algorithm based on de6 composition (MOEA/D) has demonstrated superior performance by 7 winning the multiobjective optimization algorithm competition at the 8 CEC 2009. For effective performance of MOEA/D, neighborhood size 9 (NS) parameter has to be tuned. In this letter, an ensemble of different 10 NSs with online self-adaptation is proposed (ENS-MOEA/D) to over...
متن کاملMultiobjective Structural Optimization using a Micro-Genetic Algorithm
In this paper, we present a genetic algorithm with a very small population and a reinitialization process (a micro genetic algorithm) for solving multiobjective optimization problems. Our approach uses three forms of elitism, including an external memory (or secondary population) to keep the nondominated solutions found along the evolutionary process. We validate our proposal using several engi...
متن کاملA Review towards Evolutionary Multiobjective optimization Algorithms
Multi objective optimization is a promising field which is increasingly being encountered in many areas worldwide. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used to solve Multi objective problems. Various multiobjective evolutionary algorithms have been devel...
متن کاملMultiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
In trying to solve multiobjective optimization problems, many traditional methods scalar-ize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in...
متن کامل